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Abstract

The ratio of two probability density functions appears in various machine learn-

ing tasks such as conditional density estimation, outlier detection, non-stationarity

adaptation, dimensionality reduction, independent component analysis, clustering

and classification. Therefore the problem of estimating the density ratio is attract-

ing a great deal of attention these days. Recently, direct density ratio estimation

methods have been proposed and shown to be effective for many machine learn-

ing problems. The key idea of the direct density ratio approach is that the ratio

is directly estimated so that difficult density estimation is avoided. There are still

two major open topics to improve the density ratio approach in terms of accuracy

and computational efficiency. This thesis focuses on them.

Firstly, we investigate a computationally efficient solution for more general

problem setting. Multi-label classification allows a sample to belong to mul-

tiple classes simultaneously, which is often the case in real-world applications

such as text categorization and image annotation. In multi-label scenarios, taking

into account correlations among multiple labels can boost the classification accu-

racy. However, this makes classifier training more challenging because handling

multiple labels induces a high-dimensional optimization problem. We propose a

scalable multi-label method based on least-square approach to density ratio esti-

mation. Through experiments, we show the usefulness of our proposed method.

Secondly, we investigate a deep model for density ratio estimation. So far,

v



parametric and non-parametric direct density ratio estimators with various loss

functions have been developed, and the kernel least-squares method was demon-

strated to be highly useful both in terms of accuracy and computational efficiency.

On the other hand, recent study in pattern recognition exhibited that deep architec-

tures such as a convolutional neural network can significantly outperform kernel

methods. We propose to use the convolutional neural network in density ratio es-

timation, and experimentally show that the proposed method tends to outperform

the kernel-based method in outlier detection tasks in images.

Given the encouraging experimental results of the proposed methods, we con-

clude that the proposed density ratio approaches with a deep model and multi-label

problem setting are successful and worth a further study in the future.
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Chapter 1

Introduction

1.1 Density ratio in machine learning

Data is information for a computer to work on, usually in the form of statistics that

can be analysed. The main goal of machine learning is to learn some rules from

given data. Then we can extract useful information hidden in data using learned

rules.

In statistical machine learning, observed data is assumed to be drawn from

unobservable underlying probability density function. The ratio of these two

probability densities is the density ratio. It appears in many machine learning

tasks such as probabilistic classification, outlier detection, multi-task learning,

non-stationarity adaptation, two-sample test, change-point detection in time se-

ries and conditional density estimation. We introduce the details of probabilistic

classification, multi-task learning and outlier detection. These are closely related

with the topics in thesis.

3



4 Chapter 1. Introduction

1.1.1 Probabilistic classification

The classification is a typical supervised learning problem. The goal of classifica-

tion is to identify to which of classes a new observed data belongs. Probabilistic

classification is based on the class-posterior probability given the new observed

data. The class-posterior probability is used to acquire the confidence of class

prediction. Some applications require the confidence of the predicted class label

to improve the performance (Sugiyama et al., 2012b).

The class-posterior probability is expressed as

p(x|y) =
p(x, y)

p(x)
,

where x is the data and y is a label. Therefore probabilistic classification can be

carried out by estimating the density ratio.

1.1.2 Outlier detection

The outlier means inconsistent observation in a given dataset. Outliers occur be-

cause mechanical problems, fraudulent behaviour, human or instrument error and

changes in system behaviour (Hodge and Austin, 2004).

Since outliers degrade performance significantly, outlier detection is a critical

task in many applications. Outlier detection has been used to detect and remove

anomalous data from a dataset. It is employed in many fields with different names:

anomaly detection, novelty detection, noise detection and exception mining. For

example, detecting unauthorized access in wireless sensor network (Branch et al.,

2013), topic detection in news documents (Yamanishi et al., 2000), medical con-

dition monitoring such as heart-rate and brain tumor monitoring (Ahmed et al.,

2014; Marateb et al., 2012), object detection on streaming data (Assent et al.,

2012), unexpected entries detection in a large data set (Buzzi-Ferraris and Ma-

nenti, 2011), identifying novel features or misclassified features in the satellite
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images (Byers and Raftery, 1998), fraud detection (Fawcett and Provost, 1999)

etc. For demands on various applications, outlier detection has been studied in

statistics, neural networks, machine learning, data mining communities and also

hybrid systems actively.

Usually outlier detection has the unsupervised learning scenario because most

applications dose not have prior knowledge of the data. Even though in some ap-

plications supervised (Marsland, 2001), or semi-supervised (Fawcett and Provost,

1999; Gao et al., 2006) approaches are available and can perform better than the

unsupervised approach, it is very expensive to get the label information in practice.

Beside labeling diverse anomalous data is even harder. For this reason, supervised

or semi-supervised setting is inappropriate to outlier detection.

The inlier-based outlier detection method is to identify outlier instances in

the test set based on the training set consisting only of inlier instances (Hido

et al., 2011). Information of inlier samples should be available, nevertheless the

inlier-based outlier detection is more reasonable than the semi-supervised learning

method due to getting the prior knowledge of inlier samples is simply done from

the past observations. The ratio of training and test data densities is estimated as

a measure of outlyingness of data. For example new observed data do not contain

any outliers then the ratio of training and test data is one and samples with the

ratio of training and test data close to zero are plausible to be outliers.

1.1.3 Multi-task learning

Multi-task learning is a method of inductive learning. The main idea is that data

shares common information among different tasks and learning all tasks simul-

taneously and taking into relatedness behind the tasks that account for classifiers

will get better performance than solving multiple learning tasks separately (Caru-

ana, 1997).
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There are several multi task learning methods: multi-task learning by naive

sample sharing, adaptive sample sharing with importance sampling, and implicit

sample sharing using regularization (Sugiyama et al., 2012b). Of these, multi-task

learning by adaptive sample sharing with importance sampling exploits impor-

tance for measuring similarity between target task and other tasks. In the context

of importance sampling, the density ratio is called the importance.

1.2 Algorithms of density ratio estimation

The goal of density ratio estimation is to estimate the density ratio r(x).

r(x) =
pnu(x)

pde(x)
,

where pnu(x) and pde(x) are the probability densities from samples {xnu
i }nnu

i=1 and

{xde
j }

nde
j=1. “nu” and “de” mean “numerator” and “denominator”, respectively.

1.2.1 Density estimation

A naive approach to solve density ratio estimation is to firstly estimate pnu(x)

and pde(x) separately. Then the ratio of estimated densities is computed. How-

ever, this approach does not perform well. There are two reasons. Firstly, density

estimation is a very hard problem. In parametric density estimation such as maxi-

mum likelihood estimation, we assume that we know the shape of the distribution.

Often this assumption is erroneous in practice then we produce false results. In

non-parametric density estimation such as kernel density estimator, we do not

need such an assumption. However, it is inaccurate when observed data is insuffi-

cient (Kawahara and Sugiyama, 2012) and also very difficult in high dimensional

problems (Schölkopf et al., 2001). Furthermore cross validation is computation-

ally infeasible when bandwidths need to be selected for each dimension (Liu et al.,
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2007). Secondly, the estimation error incurred in the first density estimation step

can be magnified in the second step of computing their ratio (Sugiyama et al.,

2012b). Below, a direct density ratio estimator that does not involve density esti-

mation is reviewed.

1.2.2 Least-squares approach

In this section, we review the least-squares approach to direct density ratio esti-

mation. This is called least-squares importance fitting (LSIF) (Sugiyama et al.,

2012b). Let r̂(x) be a model of the true density ratio. The following squared error

SE is minimized:

SE(r) :=

∫
(r̂(x)− r(x))2pde(x)dx

=

∫
r̂(x)2pde(x)dx− 2

∫
r̂(x)pnu(x)dx +

∫
r(x)2pnu(x)dx,

where the last term is a constant so can be ignored. The first two terms are denoted

by SE:

S̃E(r) :=

∫
r̂(x)2pde(x)dx− 2

∫
r̂(x)pnu(x)dx,

which is empirically approximated by

1

nde

nde∑
j=1

r(xde
j )2 − 2

nnu

nnu∑
i=1

r(xnu
i ).

A linear density ratio model has been used for LSIF. The model of true density

ratio r̂(x) is modeled by

r̂(x) =
B∑
b=1

θbφb(x) = φ(x)>θ,

where B is the number of parameters and θ is a parameter vector. φ(x) ∈ RB is

the basis function vector. In practice, we may use a kernel model such as Gaussian

kernel.
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LSIF is computationally highly efficient and easy to implement. In this the-

sis, we propose a computationally efficient probabilistic classifier for multi-label

problems using LSIF and we introduce a novel deep model for LSIF. Details are

described in next section.

1.3 Contributions of this thesis

1.3.1 An overview

We contribute to direct density ratio estimation algorithms for two computer vi-

sion topics: multi-label classification and outlier detection. Firstly, computer vi-

sion embraces the tasks for image processing, recognition, and annotation. These

tasks can be effectively expressed by the multi-label framework that is an image

containing more than one label information. Consequently, the issue of learning

from multi-label data has attracted great attention from a lot of computer vision

tasks. In this vein, we propose a new computationally efficient multi-label classi-

fication using direct density ratio estimation. Secondly, outlier detection in large

and high dimensional image datasets is critical and a complex matter. Especially,

mislabelling by a human error is one of the biggest factors of outliers. As a solu-

tion of this issue, we propose a new method of detecting outliers by estimating the

density ratio based on a deep model. Then, we experimentally show that proposed

method can detect mislabelled data.

In this section, we present our contributions in details.

1.3.2 Computationally efficient multi-label classification

In real-world, not only image annotation but many applications also (e.g. text cat-

egorization, audio instrument detection, etc) involve multiple label classes. These
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problems can be expressed using the multi-label framework more naturally. Con-

sequently, the issue of learning from multi-label data has attracted great attention

from many fields in recent years.

In the previous research, the probabilistic classifier using least-squares ap-

proach to density ratio estimation has achieved promising results in the single-

label classification (Sugiyama, 2010; Yamada et al., 2011) and the multi-task

learning (Simm et al., 2011). However, when the size of dataset and the dimen-

sion of label are large, naive implementation of multi-label classification is more

computationally expensive than single-label classification and multi-task learning.

Because the essential number of training samples for multi-label classification is

multiplied according to the dimension of the label.

To overcome this, we suggest computationally efficient solution for multi-

label classification in this thesis.

1.3.3 Model exploring

We introduce practical implementation of density ratio estimation for a novel deep

model. Most of the previous researches of density ratio estimation have used shal-

low models including the linear and kernel models, log-linear model and Gaus-

sian mixture model (Sugiyama et al., 2012b).

• Linear and kernel models: The most widely used model for density ratio

estimation (Sugiyama, 2010; Yamada et al., 2011; Sugiyama et al., 2008;

Kanamori et al., 2009; Suzuki et al., 2009; Sugiyama et al., 2010).

• log-linear model: Another popular model for density ratio estimation.

r̂(x;θ, β) = exp(φ(x)>θ + β)),

where β is a normalization parameter.
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It has been used for Kullback-Leibler importance estimation procedure (KLIEP)

(Tsuboi et al., 2009; Kanamori et al., 2010). KLIEP is a method of density-

ratio estimation by density fitting under the Kullback-Leibler divergence

(Sugiyama et al., 2008; Nguyen et al., 2010).

• Gaussian mixture model: A probabilistic model that assumes all data are

generated from a mixture of Gaussian distributions. It has been also used

for KLIEP (Yamada and Sugiyama, 2009).

r̂(x; {θm,µm,Σm}cm=1) =
c∑

m=1

θmN(x;µm,Σm),

where c is the number of mixing components, {θm}cn=1 are mixing co-

efficients, {µm}cn=1 are means of Gaussian functions and {Σm}cn=1 are

covariance matrices of Gaussian functions. N(x;µm,Σm) is the multi-

dimensional Gaussian density with mean µ and covariance matrix Σ.

These direct density ratio estimators with a kernel density-ratio model was

demonstrated to be highly useful in terms of both accuracy and computational

efficiency. On the other hands, recent studies in pattern recognition demonstrated

that a deep model tends to perform better than shallow models (Larochelle et al.,

2007). Especially, CNN are widely used models for images (Krizhevsky et al.,

2012; Jarrett et al., 2009; Lee et al., 2009; Turaga et al., 2010; Ngiam et al., 2010).

In this thesis, we investigate a deep model for density ratio estimation. This

allows us to extract features that are robust to spatial variations and have good

internal information. We propose to use the CNN model in density ratio estimation

and experimentally show that the proposed method tends to outperform the kernel-

based method in outlier detection tasks in images.
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Figure 1.1: Organization of thesis.

1.4 Organization

The thesis consists of 6 chapters (see Figure 1.1). In this section we describe the

organization of this thesis. Chapter 2 and Chapter 3 talk about the computationally

efficient solutions for more general problem setting.

In Chapter 2, we introduce multi-label classification. Section 2.1 gives a brief

introduction of the single-label classification and the multi-class classification.

Section 2.2 reviews the multi-task classification and its applications. Section 2.3

shows an overview of multi-label classification and its application. Various trans-

formation methods of the multi-label classification problem are introduced.

Chapter 3 covers our work on density ratio estimation for multi-label classi-
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fication. Section 3.1 reviews the least-squared probabilistic classification (LSPC)

for a single-label dataset. Section 3.2 shows the LSPC for multi-task learning. In

Section 3.3, we extend multi-task LSPC to multi-label setup in a computationally

efficient manner. We give the experiment results comparing with existing meth-

ods.

Subsequently, Chapters 4 and 5 are devoted to deep models for density ra-

tio estimation. In Chapter 4, we present an deep learning method. Section 4.1

introduces deep learning. We review deep learning algorithms according to sev-

eral criteria in Section 4.2. Especially, Section 4.2.1 and Section 4.2 explain deep

autoencoders and convolutional neural networks (CNN).

In Chapater 5, we present density ratio estimation using deep models and

demonstrate the performance of our proposed method in inlier-based outlier de-

tection. In Section 5.1, we explain related studies and an overview of the proposed

method. In Section 5.2, we introduce least-squares importance fitting (LSIF) that

uses the squared-loss to fit a density ratio model to data. It is using a linear model.

Section 5.3 derives how to apply the uLSIF criterion to the multilayer percep-

tron (MLP). We propose the uLSIF based on a deep CNN model in Section 5.4.

Section 5.4.1 introduces the CNN model and Section 5.4.2 formulates the prob-

lem of training our method. In Section 5.5, we describe the inlier-based outlier

detection and experimental setup. Then the proposed CNN-based uLSIF is com-

pared with the kernel-based uLSIF and the kernel-based KLIEP in experiments of

inlier-based outlier detection.

Finally, we summarize this thesis and show future works in Chapter 6.



Chapter 2

Multi-label classification

This chapter focuses on a multi-label scenario then introduces other problem set-

tings, single-label classification, multi-task classification and those algorithms.

2.1 Single-label classification

Figure 2.1 shows the overview of single-label learning. In traditional single-label

setting, a set of examples are associated with a single-label y from a set of disjoint

classes. The classes is learned independently, so this is also called single-task

learning.

A single-label dataset is composed of n examples (x1, y1), (x2, y2), . . . (xn, yn),

where y ∈ {1, . . . , Y }, and Y is the number of classes. If Y = 2, this is binary

classification or a binomial problem, otherwise Y > 2, this is multi-class or a

multinomial classification problem. For example, in a binary classification prob-

lem, a medical image is classified into the disease or not and in a music retrieval

system, a music file would be classified into the result set of a search or not by

the relevance of a searching keyword. In a multi-class classification problem, a

medical image can be labeled as one of these categories of organ ”heart”, ”brain”,

13
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Figure 2.1: Single-label learning.

”pancreas”, etc. A music file also is labeled as one of various classes according to

its genre, title, singer, etc.

2.2 Multi-task classification

Multi-task learning is a method of inductive learning. The main idea of multi-

task learning is that learning all tasks simultaneously and taking into relatedness

behind the tasks that account for classifiers will get better performance than solv-

ing multiple learning tasks separately. A multi-task learning dataset is given by

(x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn), where tn ∈ 1, . . . , T denotes the task in-

dex. Figure 2.2 denotes the overview of multi-task learning. Each task may have

different input data. All tasks are learned simultaneously to model the intrinsic

relatedness between the tasks in contrast with single-task learning in Figure 2.1.

One application of multi-task learning is the recommendation system (Lenk
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Figure 2.2: Multi-task learning.

et al., 1996). Each consumer is a task. The features of a product (to use car for

example, fuel efficiency, drive type, transmission type, etc) are input data and

output will be the score of user’s preference to products. Similarly, email spam-

filter (Attenberg et al., 2009) and web search (Chapelle et al., 2010) are also using

multi-task learning.

2.3 Multi-label classification

The classification problem where a single sample can belong to multiple classes at

the same time is called multi-label classification. In the multi-label problem set-

ting, a sample can belong to a set of labels y at the same time. A datasetD is com-

posed of n examples (x1,y1), (x2,y2), . . . , (xn,yn), where yn = (yn,1, . . . , yn,T )> ∈

{1, . . . , Y }, and T is the number of labels. Figure 2.3 show the overview of multi-
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Figure 2.3: Multi-label learning.

label learning. Some labels may share the input data. All labels are learned simul-

taneously to model the label relatedness.

For example, in web-based audio repositories each audio signal is associated

with various tags such as “acoustic”, “drum”, and “vocal”. Also, in image an-

notation tasks (Everingham et al., 2010), a single photo can be simultaneously

annotated as “ocean”,“sun”, and “tree”. Similarly, in text mining (Project, 2009),

a news article about Transformer can be categorized into the “car”, “robot”, and

“movie” categories.

The multi-label classification problem can be transformed into different prob-

lem setting such as single-label classification or regression problems (Tsoumakas

et al., 2010). We introduce the details of transformation methods and related pre-

vious studies below.

To describe transformation methods of the multi-label classification problem,

we will use an example of the multi-label dataset describe in Table 2.1. In this
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example, a data point is an audio file that belongs to one and more of four labels:

violin, cello, piano and vocal.

Table 2.1: Example of a multi-label dataset

Data

Label
Violin Cello Piano Vocal

Audio 1 1 0 1 0

Audio 2 0 0 1 1

Audio 3 1 0 0 0

Audio 4 0 1 1 0

The simplest way to solve the multi-label problem is to force the learning

problem into single-label classification. Table 2.2 shows the first method that ran-

domly or subjectively deletes labels, leaving one. The second method as shown in

Table 2.3, removes every data which has multi-label information from the dataset.

However, since these two methods have too rigid rules and discard a lot of mean-

ingful information from the original dataset, we do not consider further in this

thesis.

Table 2.2: Transformed dataset using first method

Data

Label
Violin Cello Piano Vocal

Audio 1 0 0 1 0

Audio 2 0 0 0 1

Audio 3 1 0 0 0

Audio 4 0 1 0 0

The third method constructs the set of labels that exist in the dataset then con-
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Table 2.3: Transformed dataset using second method

Data

Label
Violin Cello Piano Vocal

Audio 3 1 0 0 0

sider each set of labels as a single-label (Boutell et al., 2004). Table 2.4 has the

transformed result from Table 2.1. However, the third method is at the risk of too

sparse data set (a large number of classes and few data per class) because it pro-

duces the set of labels in accordance with every data. Therefore the third method

has been used in the past. In McCallum (1999), they did document recognition

using the third transformation method. Based on probabilistic generative model a

document is expressed by a mixture of the words distributions of its labels.

Table 2.4: Transformed dataset third method

Data

Label
Violin Violin & piano Piano & cello Piano & vocal

Audio 1 0 1 0 0

Audio 2 0 0 1 0

Audio 3 1 0 0 0

Audio 4 0 0 0 1

The fourth method has been commonly used. This makes a transformed dataset

Dy by duplicating datasetD as the number of labels T . Then each data has single-

labels as in Table 2.5 that is the transformed result of the dataset described in

Table 2.1 the dataset. This method is the same as treating the multi-class classi-

fication problem as a binary classification problem. This condition makes it hard

to take label correlation into account. To get the output, this method restores
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each label information from a duplicated dataset to multi-label vector (Li and

Ogihara, 2003). In Zhang and Zhou (2007a), the k-nearest neighbor classifier for

multi-label learning (ML-kNN) follows the paradigm of the fourth transformation

method that ML-kNN uses the kNN algorithm independently for each label.

Table 2.5: Transformed dataset fourth method

Data

Label
Violin The others

Data

Label
Cello The others

Audio 1 1 0 Audio 1 0 1

Audio 2 0 1 Audio 2 0 1

Audio 3 1 0 Audio 3 0 1

Audio 4 0 1 Audio 4 1 0

Data

Label
Piano The others

Data

Label
Vocal The others

Audio 1 1 0 Audio 1 0 1

Audio 2 1 0 Audio 2 1 0

Audio 3 0 1 Audio 3 0 1

Audio 4 1 0 Audio 4 0 1

The fifth method transforms the multi-label dataset as shown in Table 2.6.

Each data (x,y) is decomposed into |y| data (x, y) for all y ∈ y. In this pro-

cedure, the loss of information is unavoidable by eliminating some labels. The

transformed dataset is used for learning a single-label coverage-based classifier.

In Chen et al. (2007), the fifth method is used for multi-label feature selection to

improve multi-label classification performance.

The sixth method treats multi-label as respective T single-labels as shown in

Table 2.7. Each data (x,y) is decomposed into T data (x, y). This simple method
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Table 2.6: Transformed dataset fifth method

Data Label

Audio 1a Violin

Audio 1b Piano

Audio 2a Piano

Audio 2b Vocal

Audio 3 Violin

Audio 4a Cello

Audio 4b Piano

is widely used for many adaptation methods which extend exist specific learning

methods to deal with multi-label data.

In Schapire and Singer (2000); De Comité et al. (2003), AdaBoost is ex-

tended for multi-label data: AdaBoost.MH and AdaBoost.MR and a combina-

tion of AdaBoost.MH with the decision tree. The conditional random field is

also used inGhamrawi and McCallum (2005) for multi-label classification. Back-

propagation multi-label learning (BP-MLL) (Zhang and Zhou, 2006) extends the

back-propagation algorithm for multi-label learning. They proposes a new cost

function that takes multi-labels into account. The multi-class proposes multi-label

perceptron (MMP) (Crammer and Singer, 2003) is the algorithm for multi-label

ranking based on the perceptron algorithm.

The sixth method is straightforward and effective in applying to many adap-

tation methods. However, it is hard to take label correlation into account. In the

next chapter, we introduce a multi-label classification method that use the sixth

method and also can consider label correlation.
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Table 2.7: Transformed dataset sixth method

Data Label

Audio 1a Violin 1

Audio 1b Cello 0

Audio 1c Piano 1

Audio 1d Vocal 0

Audio 2a Violin 0

Audio 2b Cello 0

Audio 2c Piano 1

Audio 2d Vocal 1

Audio 3a Violin 1

Audio 3b Cello 0

Audio 3c Piano 0

Audio 3d Vocal 0

Audio 4a Violin 0

Audio 4b Cello 1

Audio 4c Piano 1

Audio 4d Vocal 0
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Chapter 3

Density ratio estimation for

multi-label classification

Multi-label classification allows a sample to belong to multiple classes simulta-

neously, which is often the case in real-world applications such as audio tagging

and image annotation. In multi-label scenarios, taking into account correlation be-

tween multiple labels can boost the classification accuracy. However, this makes

classifier training more challenging because handling multiple labels induces a

high-dimensional optimization problem. In this chapter, we propose a scalable

multi-label classifier based on the least-squares probabilistic classifier. The pro-

posed method regards the multi-label classification problem as a multi-task learn-

ing problem. Through experiments, we show the usefulness of our proposed

method.

3.1 Probabilistic Classification by LSPC

In this section, we review the least-squares probabilistic classifier (LSPC) for

single-label classification (Sugiyama, 2010; Yamada et al., 2011).

23
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Suppose that we are given a set of training samples {(xn, yn)}Nn=1 drawn

independently from a joint probability distribution with density p(x, y), where

xn ∈ RD is a feature vector, D is the dimensionality of feature vector x, yn ∈

{1, . . . , Y } is a class label, and Y is the number of classes. The objective of prob-

abilistic classification is to learn the class-posterior probability p(y|x) from the

training samples. Based on the class-posterior probability, classification of a new

sample x can be carried out by ŷ := arg maxy∈{1,...,Y } p(y|x), with confidence

p(ŷ|x).

For each y ∈ {1, . . . , Y }, we model p(y|x) by

q(y|x;θy) :=
B∑
b=1

θy,bφb(x) = θ>y φ(x),

where B denotes the number of parameters, θy = (θy,1, . . . , θy,B)> ∈ RB is the

parameter vector, and φ(x) = (φ1(x), . . . , φB(x))> ∈ RB is the basis function

vector. In practice, we may use a kernel model, i.e., we set B = N and φb(x) =

K(x,xb), where K(x,x′) is a kernel function.

We fit the above model to the true class-posterior probability p(y|x) under the

following squared loss:

Jy(θy) :=
1

2

∫
(q(y|x;θy)− p(y|x))2 p(x)dx

=
1

2

∫
q(y|x;θy)

2p(x)dx−
∫
q(y|x;θy)p(x|y)p(y)dx+C,

where p(x) denotes the marginal density of feature vector x and C is a constant

independent of θy. Approximating the expectations over x by sample averages

and the class-prior probability p(y) by sample ratios, ignoring constant C and fac-
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tor 1/N , and including an `2-regularizer, we have the following training criterion:

Ĵy(θy) :=
1

2

N∑
n=1

q(y|xn;θy)
2−
∑

n:yn=y

q(y|xn;θy) +
ρ

2
‖θy‖2

=
1

2
θ>y Φ>Φθy − θ>y Φ>πy +

ρ

2
‖θy‖2,

where ρ > 0 is the regularization parameter, Φ = (φ(x1), . . . ,φ(xN))> ∈ RN×B

is the design matrix, and πy is the N -dimensional class-indicator vector defined,

i.e., πy,n = 1 if yn = y and πy,n = 0 otherwise. We can obtain the minimizer θ̂y

analytically as

θ̂y =
(
Φ>Φ + ρIB

)−1
Φ>πy,

where IB denotes the B-dimensional identity matrix.

As the number of training samples increases, the solution q(y|x; θ̂y) was shown

to converge to the true class-posterior probability p(y|x) with the optimal conver-

gence rate (Sugiyama, 2010). For a finite sample size, we obtain the final solution

by rounding up a negative output to zero and normalization as follows (Yamada

et al., 2011):

p̂(y|x) =
max(0, q(y|x; θ̂y))∑Y

y′=1 max(0, q(y′|x; θ̂y′))
.

3.2 Multi-Task LSPC

When multiple related learning tasks exist, solving them simultaneously by shar-

ing some common information behind the tasks is expected to be more promising

than solving them separately. This is the idea of multi-task learning. A com-

putationally efficient multi-task learning method can be developed by combining

multiple LSPCs. Here, we review multi-task LSPC (MT-LSPC) (Simm et al.,

2011) in a slightly generalized way.
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Suppose that we are given a set of training samples {(xn, yn, tn)}Nn=1, where

tn ∈ {1, . . . , T} denotes the task index. We assume that {(xn, yn)}Nn=1 are drawn

independently from a joint probability distribution with density ptn(x, y). The

objective of multi-task probabilistic classification is to learn the class-posterior

probabilities pt(y|x) for t ∈ {1, . . . , T}.

Let us model pt(y|x) for each t ∈ {1, . . . , T} and y ∈ {1, . . . , Y } as

q(y|x;θy,t) :=
B∑
b=1

θy,b,tφb(x) = θ>y,tφ(x),

where φ(x) = (φ1(x), . . . , φB(x))> ∈ RB and θy,t := (θy,1,t, . . . , θy,B,t)
> ∈

RB. The basic idea of MT-LSPC is that solutions of all tasks are imposed to be

close to each other in terms of the `2-norm. More specifically, let us decom-

pose θy,t as θy,t = βy,0 + βy,t, where βy,0 is the common part of solutions

for all tasks and βy,t is the individual part of solutions for task t. Then, for

βy :=
(
β>y,0,β

>
y,1, . . . ,β

>
y,T

)> ∈ RB(T+1), the training criterion of MT-LSPC

is given by

ĴMT
y (βy) :=

1

2

N∑
n=1

q(y|xn;βy,0 + βy,tn)2 −
∑

n:yn=y

q(y|xn;βy,0 + βy,tn)

+
ω0

2
‖βy,0‖2 +

1

2

T∑
t=1

ωt‖βy,t‖2,

where ω0 > 0 is the regularization parameter for the task-independent part and

ωt > 0 (t = 1, . . . , T ) is the regularization parameter for the task-dependent parts.

For 0B denoting the B-dimensional zero vector, let

ξt(x) :=
(
φ(x)>,0>B(t−1),φ(x)>,0>B(T−t)

)>∈ RB(T+1),

Ξ := (ξt1(x1), . . . , ξtN (xN))> ∈ RN×B(T+1),

Ω := diag (ω0, ω1, . . . , ωT ) ∈ R(T+1)×(T+1).
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Then the MT-LSPC training criterion can be compactly expressed as

ĴMT
y (βy) =

1

2
β>y Ξ>Ξβy−β>y Ξ>πy+

1

2
β>y (Ω⊗ IB)βy,

where ⊗ denotes the Kronecker product. Because the above ĴMT
y (βy) is essen-

tially the same form as the original single-task LSPC training criterion, we can

obtain the minimizer β̂y analytically as

β̂y =
(
Ξ>Ξ + Ω⊗ IB

)−1
Ξ>πy.

Suppose that we use a kernel model (i.e., B = N ). Then, the size of the matrix to

be inverted in the above equation is N(T + 1) × N(T + 1). Thus, the computa-

tional complexity for naively computing the solution β̂y is O(N3T 3), which can

be expensive. However, because the rank of Ξ>Ξ is at most N , the solution can

be computed more efficiently. More specifically, q(y|x; θ̂y,t) can be expressed as

follows:

q(y|x; θ̂y,t) = θ̂
>
y,tφ(x) = β̂

>
y ξt(x) = π>yA

−1bt,

whereA is the N ×N matrix and bt is the N -dimensional vector defined as

An,n′ := [Ξ(Ω−1 ⊗ IB)Ξ> + IN ]n,n′

=

(
1

ω0

+
δtn,tn′

ωtn

)
φ(xn)>φ(xn′) + δn,n′ ,

bt,n := [Ξ(Ω−1⊗IB)ξt(x)]n =

(
1

ω0

+
δt,tn
ωt

)
φ(xn)

>φ(x).

Here δt,t′ denotes the Kronecker delta. The computational complexity for com-

puting the solution in this way is reduced to O(N3), which is independent of T .

3.2.1 Reformulation of MT-LSPC

In this chapter, we develop a multi-label method based on MT-LSPC. However,

the original MT-LSPC imposes all solutions to be close to each other via the com-

mon part, which is not necessarily appropriate in the multi-label scenario. Here,
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we derive an extension of MT-LSPC that imposes a multi-task penalty via pair-

wise similarities between tasks. This pairwise version will be used for developing

a multi-label method later.

For θy := (θ>y,1, . . . ,θ
>
y,T )> ∈ RBT , let us consider the following training

criterion:

ĴMT′

y (θy) :=
1

2

N∑
n=1

q(y|xn;θy,tn)2−
∑

n:yn=y

q(y|xn;θy,tn)

+
1

2

T∑
t=1

λt‖θy,t‖2 +
1

4

T∑
t,t′=1

γt,t′‖θy,t − θy,t′‖2,

where λt > 0 is the regularization parameter for task t and γt,t′ > 0 is the similar-

ity between tasks t and t′ (large γt,t′ corresponds to similar tasks). Let

ψt(x) :=
(
0>B(t−1),φ(x)>,0>B(T−t)

)> ∈ RBT ,

Ψ := (ψt1(x1), . . . ,ψtN
(xN))> ∈ RN×BT .

Then ĴMT′
y can be compactly expressed as

ĴMT′

y (θy) =
1

2
θ>y Ψ>Ψθy − θ>y Ψ>πy +

1

2
θ>y (C ⊗ IB)θy,

where C is the T × T matrix defined as

Ct,t′ := δt,t′

(
λt +

T∑
t′′=1

γt,t′′

)
− γt,t′ .

Taking the derivative of J̃MT
y with respect to θy and setting it to zero, we have

the minimizer θ̂y analytically as

θ̂y =
(
Ψ>Ψ +C ⊗ IB

)−1
Ψ>πy.

Using the same trick as MT-LSPC, q(y|x; θ̂y,t) can be efficiently computed based

on the following expression:

q(y|x; θ̂y,t) = θ̂
>
y,tφ(x) = θ̂

>
y ψt(x) = π>yA

′−1b′t,
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whereA′ is the N ×N matrix and b′t is the N -dimensional vector defined as

A′n,n′ := [Ψ(C−1 ⊗ IB)Ψ> + IN ]n,n′

= [C−1]tn,tn′φ(xn)>φ(xn′) + δn,n′ ,

b′t,n := [Ψ(C−1 ⊗ IB)ψt(x)]n = [C−1]t,tnφ(xn)>φ(x).

The computational complexity for computing the solution in this way is reduced

to O(N3 + T 3). Note that the factor T 3 comes from the computation of C−1; if

the task similarity matrix Γ (with Γt,t′ = γt,t′) enjoys nice structure such as being

low-rank or sparse, it may be computed more efficiently.

3.3 Multi-Label LSPC

3.3.1 Methodology

In this section, we propose a computationally efficient multi-task classifier based

on LSPC called multi-label LSPC (ML-LSPC).

Suppose that we are given a set of training samples {(xn,yn)}Nn=1, where

yn = (yn,1, . . . , yn,T )> ∈ {0, 1}> is the class-label vector for the n-th sample and

T is the number of labels. Input vector x is assumed to be drawn independently

from p(x), and the t-th element yt of y = (y1, . . . , yt)
> is assumed to be drawn

from pt(y|x). The objective of multi-label probabilistic classification is to learn

the class-posterior probabilities pt(y|x) for t ∈ {1, . . . , T}.

Requiring that similar labels should have similar classification solutions, we

can employ a multi-task learning method to solve the multi-label learning prob-

lem. Indeed, from the MT-LSPC training criterion, we immediately have the train-
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ing criterion for ML-LSPC:

ĴML
y (θy) :=

T∑
t=1

(
1

2

N∑
n=1

q(y|xn;θy,t)
2−
∑

n:yn,t=y

q(y|xn;θy,t)

+
1

2
λt‖θy,t‖2

)
+

1

4

T∑
t,t′=1

γt,t′‖θy,t − θy,t′‖2.

However, a notable difference between multi-task and multi-label formulations is

that the number of training samples is N in the multi-task formulation, whereas

that in the multi-label formulation is essentially NT . Thus, if we naively apply

MT-LSPC to the multi-label problem, the computational complexity is O(N3T 3)

for a kernel model (i.e., B = N ), which is expensive. Below, we explain how to

mitigate this problem.

Let Θy := (θy,1, . . . ,θy,T ) ∈ RB×T . Let πy,t be the N -dimensional class-

indicator vector for the t-th label, i.e., πy,t,n = 1 if yn,t = y, and πy,t,n = 0

otherwise. Let Πy := (πy,1, . . . ,πy,T ) ∈ RN×T . Then ĴML
y can be compactly

expressed as

ĴML
y (θy)=

1

2
tr Θ>yΦ

>ΦΘy−tr Θ>yΦ>Πy+
1

2
tr ΘyCΘ>y.

Taking the derivative of the above equation with respect to Θy and setting it to

zero, we obtain

Φ>ΦΘy + ΘyC = Φ>Πy. (3.1)

This is called the continuous Sylvester equation with respect to Θy, which often

arises in control theory (Sima, 1996).

Various algorithms for solving the Sylvester equation have been developed.

One of the simplest methods is based on the eigenvalue decompositions of Φ>Φ

andC as follows: Let f 1, . . . ,fB be eigenvectors of Φ>Φ associated with eigen-

values f1, . . . , fB, and let g1, . . . , gT be eigenvectors of C associated with eigen-
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values g1, . . . , gT . Then the solution Θ̂y to Eq.(3.1) is given analytically as

Θ̂y = (f 1, . . . ,fB)Q(g1, . . . , gT )>,

whereQ is the B × T matrix defined as

Qb,t :=
f>b Φ>Πygt
fb + gt

.

If a kernel model is used (i.e., B = N ), the computational complexity for solving

Eq.(3.1) in this way is O(N3 + N2T + NT 2 + T 3). Note that the terms N3

and T 3 come from the eigenvalue decompositions of Φ>Φ and C, which can be

performed more efficiently if they enjoy nice structure such as being low-rank or

sparse.

For large-scale data, Eq.(3.1) may be solved more efficiently by numerical

optimization. Let θy := (θ>y,1, . . . ,θ
>
y,T )> ∈ RBT . Then Eq.(3.1) can be expressed

as

Hθy = hy,

where

H := IT ⊗ (Φ>Φ) +C ⊗ IB ∈ RBT×BT ,

hy := ((Φ>πy,1)
>, . . . , (Φ>πy,T )>)> ∈ RBT .

If a kernel model is used (i.e., B = N ), naively solving Hθy = hy takes

O(N3T 3) time. Here, we take into account the Kronecker structure of H , and

solve the equation numerically by the conjugate gradient method. More specifi-

cally, we can compute the matrix-vector productHθy as

[Hθy]t = Φ>Φθy,t +
T∑

t′=1

Ct,t′θy,t′ .

Although the computational complexity for naively computingHθy isO(N3+

N2T 2) including the computation of Φ>Φ, that for computingHθy based on the
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Figure 3.1: Misclassification rate

above expression is reduced to O(N2T + NT 2). Note that the term N2T comes

from the computation Φ>Φθy,t and the term NT 2 comes from the computation∑T
t′=1Ct,t′θy,t′ . If Φ>Φ is approximated by a low-rank matrix and the task sim-

ilarity matrix Γ enjoys nice structure such as being approximately low-rank or

sparse,Hθy may be approximately computed even more efficiently.

Below, we experimentally evaluate the performance of the proposed ML-

LSPC.

3.3.2 Experiments

Toy Dataset

Let the feature dimension be D = 300, and we consider T binary classification

tasks. Training samples of the t-th task is created as follows: xn = (x1,n, . . . , xD,n)>
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Figure 3.2: Computation time

is independently drawn from the standard normal distribution and yt,n is deter-

mined by linear decision boundary

cos(2πt/T )x1,n + sin(2πt/T )x2,n

(i.e., the decision boundaries are rotated in the subspace spanned by the first two

dimensions). We set the number of training samples to N = 2000. The label sim-

ilarity Wt,t′ is set to max(0, ρt,t′), where ρt,t′ is the Pearson correlation coefficient

between {yt,n}Nn=1 and {yt′,n}Nn=1. We use the Gaussian kernel model in LSPCs.

We compare the classification performance of the plain LSPC (i.e., each task

is solved separately), the proposed ML-LSPC, the instance differentiation method

(InsDif) (Zhang and Zhou, 2007a), and the k-nearest neighbor classifier for multi-
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label learning (ML-kNN) (Zhang and Zhou, 2007b) as functions of the number of

tasks. All tuning parameters were optimized based on 5-fold cross-validation in

terms of the misclassification rate. Figure 3.1 plots the average misclassification

rate over 50 runs, showing that ML-LSPC and InsDif perform well. Figure 3.2

plots the computation time of ML-LSPC with naive implementation (we used

the left-division function ‘mldivide’ in MATLAB R©), the proposed optimization

method (we used the conjugate gradient function ‘pcg’ in MATLAB R©), InsDif,

and ML-kNN. This shows that the proposed optimization method is computation-

ally much more efficient than the naive implementation of ML-LSPC and InsDif.

Enron Email Dataset

Finally, we test the performance of the proposed method on the Enron Email

Dataset, which consists of 1072 real-world email messages (Project, 2009). Each

email message is represented as a 1001-dimensional feature vector, accompanied

with 53 labels such as newsletters, jokes, trip reports, worry, etc. We randomly

chose N = 1000 samples for training, and used the remaining 702 samples for

performance evaluation. Because the presence and absence of labels were highly

imbalanced in this dataset, we decided to evaluate the test performance (and model

selection by cross-validation) in terms of the F-measure. The average F-scores

for plain LSPC, ML-LSPC, InsDif, and ML-kNN over 50 runs were 0.554, 0558,

0.544, and 0.437. This shows that ML-LSPC overall compares favorably with

other approaches.

3.4 Discussion

Multi-label classification is useful in various real-world problems such as au-

dio tagging, image annotation, video search, and text mining. However, be-
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cause the essential number of training samples for T -dimensional label vectors

of size N is NT , naive implementation of multi-label classification is compu-

tationally expensive when N and T are large. To overcome this computational

bottleneck, we developed a multi-label method based on computationally efficient

LSPC (Sugiyama, 2010; Yamada et al., 2011).

Our key idea was to utilize the block structure of the system of linear equations

to improve the computational efficiency. Also, we can reduce the computational

complexity via the Sylvester equation. Usually, the multi-label classification is

transformed into multiple single-label classification or regression problems for

computational convenience. However, it means that we miss a chance to use the

intrinsic relatedness between labels. In the proposed method, we employ the affin-

ity matrix that measures the similarity between labels of transformed data to im-

prove performance. Through experiments, we showed that the proposed method,

ML-LSPC, is promising.



36 Chapter 3. Density ratio estimation for multi-label classification



Chapter 4

Deep learning

This chapter provides the overview of the deep learning method and its applica-

tion.

4.1 What is deep learning?

Deep learning is also called deep structured learning (Yu and Deng, 2011), deep

architectures learning (Bengio, 2009) or hierarchical learning (Hinton et al., 2012a).

Deep architecture is composed of multi-layers of non-linear operations such as

lots of hidden layers in neural networks and many levels of hidden variables in

graphical models.

The last decades, the deep learning is becoming a mature field of machine

learning with impressive performance obtained in many application areas, espe-

cially in computer vision and speech. Deep learning is associated with many

fields: machine learning, optimization, neural networks, pattern recognition, arti-

ficial intelligence and signal processing. There are three essential advances that

can make deep learning attract a great deal of attention these days (Yu and Deng,

2011). Firstly, computational abilities (e.g., graphical processing units) is im-

37
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Figure 4.1: Hierarchy of representations

proved drastically in these days. Secondly, we can use large datasets efficiently

for training. At last, remarkable advances in machine learning research have been

achieved recently. These advances enable the deep learning methods to exploit

complex non-linear operations to learn hierarchical feature representations. We

introduce more about deep learning and details of important deep learning meth-

ods.

The goal of deep learning is to learn the feature hierarchies with increasing

levels of abstraction. Each layer of deep architecture transforms input features

into a higher-level one. In this thesis, we call the model of deep learning a deep

model as contrasted with shallow models. Consider for example the task of in-

terpreting an image (LeCun et al., 2010). Good internal structure is established

by meaningful and invariant information from raw input (Figure 4.1). Raw pixels

are assembled into edges, edges compose textons, textons compose motifs, mo-

tifs compose parts and parts are assembled into a complete unit object. Speech

and natural language processing data have similar hierarchical compositionality

(LeCun and Ranzato, 2013).

Definition of the depth of a deep model is ambiguous here. In LeCun and
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Ranzato (2013), they give several examples of non-deep models to better compre-

hend the depth of a deep model. The kernel methods and support vector machines

(SVM) are not a deep model. These have kernels in the first layer and the sec-

ond layer is a linear function. The first layer is trained by using the samples as

templates for the kernel functions. Classification trees and 2-layer models are not

deep. There is no hierarchy of features, therefore all decisions are made in the

input space. Also, neural networks with 1 hidden layer are not a deep model.

4.2 Deep learning algorithms

The deep learning algorithms are categorized according by several criteria as fol-

lows:

Training protocol: supervised , unsupervised, hybrid

In the supervised deep learning algorithms, target labels of data are always

available and the parameters are initialized randomly and usually back-

propagation with stochastic gradient descent is used for training. The neu-

ral networks, recursive neural networks (RNN) and convolutional neural

networks (CNN) belong to this. Many applications of image and speech

recognition have used this algorithm.

The deep autoencoders, the deep belief networks (DBN) and the deep Boltz-

mann machines (DBM) are the unsupervised deep learning algorithms. In

this case, no information about the target class is available. DBN and DBM

train each single-layer separately in an unsupervised way.

Pre-training and supervised fine-tuning are used with the unsupervised method

to improve the performance in the hybrid method. In practice, when we only

have very few labeled samples, this yields good results.
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Learning model: neural networks, probability models, hybrid

Neural networks which have many hidden layers are the deep neural net-

works (DNN). The deep autoencoders, CNN and RNN are special types of

the DNN. Survey propagation (SP) and non-parametric Bayesian (Bayes-

NP) method are probability models.

In the hybrid method, DNN can be used to generate samples by sampling

from the networks. DBN, DBM and generalized denoising autoencoders

belong to this method and are thus generative models.

Processing direction: feed-forward pass, feed-back pass, bi-directional pass

Figure 4.2 shows three types of the deep learning model according to pro-

cessing directions. Figure 4.2.(a) is a feed-forward pass. Multilayer per-

ceptrons (MLP) and CNN belong to this. This is typical structure of neural

networks.

Figure 4.2.(b) is a feed-back pass. Stacked sparse coding and deconvolu-

tional neural networks belong to this. Even though this architecture is quite

novel, their solution is based on the connection between traditional ways.

For instance, stack sparse coding repeatedly trains separable layers using

predictive sparse coding then modifies the trained layers by using autoen-

coders for each layer.

Figure 4.2.(c) is a bi-directional pass. DBM and stacked autoencoders be-

long to this. Two neighbouring layers are undirected. This method starts to

learn with the lowest level (i.e., input node) and stack upwards.

Of these methods, we describe details of the two simple and effective methods:

• Deep autoencoder: A prominent example of the unsupervised deep learning

method. we discuss its application in speech processing.
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Figure 4.2: Three types of the deep learning method according to processing di-

rections.

• CNN: A major example of the supervised deep learning method. We discuss

its application in computer vision.

4.2.1 Deep autoencoder

An autoencoder consists of an input layer, one or more hidden layers that learn

higher-level abstraction of features, and an output layer which matches the input

layer for reconstruction. When the number of hidden layers is greater than one,

the autoencoder is considered to be the deep autoencoder. The deep autoencoder

(Bengio et al., 2007; Hinton and Salakhutdinov, 2006) is a discriminative DNN

whose output targets are the data input itself rather than label information, so this

is an unsupervised learning algorithm. The deep autoencoder is often exploited

for learning effective representations of the original data.

General shallow autoencoders are trained using back-propagation with stochas-
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tic gradient descent. Although this method is simple and reasonably effective for

sallow models, there are problems when using back-propagation to train DNN

that has many hidden layers, such as the vanishing gradient problem, slow leaning

and poor performance, especially when only a limited amount of training data is

available. However, these problems can be alleviated by pre-training each layer

as a general autoencoder (Hinton et al., 2006).

In speech processing

Deep learning has been getting the spotlight in speech recognition recently. Here

we introduce an application for feature learning of speech audio files (Deng et al.,

2010). This work exploits a deep autoencoder for extracting binary speech codes

from the raw speech spectrogram data. An extracted binary code can be used in

speech recognition and information retrieval.

Firstly, an undirected generative model called a Gaussian-Bernoulli restricted

Boltzmann machine (RBM) is built. This model has one visible layer of variables

with Gaussian noise and one hidden layer of binary latent variables. After learning

the first Gaussian-Bernoulli RBM, its hidden units are treated as input for another

Bernoulli-Bernoulli RBM. The connection of two RBMs constitute a DBN (Hin-

ton et al., 2006). This is the last step of pre-training. Then this DBN is treated

as the deep autoencoder with three layers. This deep autoencoder is fine-tuned

using error back-propagation to minimize the reconstruction error. After learning

is complete, spectrogram data can be encoded and reconstructed to binary codes

by using the trained deep autoencoder.

4.2.2 Convolutional neural networks

The human vision field requires the construction of good internal representations

for visual perception (Hubel and Wiesel, 1962). Therefore, constructing and pro-
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ducing internal representation is directly connected to extract suitable features.

CNN (Lee et al., 2009, 2011) was inspired by such biological visual field pro-

cesses (Matsugu et al., 2003). This consists of typically six or seven layers of

alternate succession of convolution layers and sub-sampling layers with a MLP or

DNN on top. Each convolution layer observes particular features at every differ-

ent location in the input feature map and shares many weights. The sub-sampling

layer subsamples the output of the convolution layer and reduces the data rate

from the layer below. Hence the output feature map of the convolution layer with

appropriately chosen sub-sampling schemes acquires the translational invariance.

CNN is one of the few models that can be trained purely in an supervised way

and back-propagation with stochastic gradient descent is usually used for training.

In computer vision

CNN has been found very effective and been commonly used in computer vision,

image recognition and video recognition (Ciresan et al., 2012; Dean et al., 2012;

Le, 2013). Some say that CNN is the first truly successful deep learning model in

a robust manner (Arel et al., 2010) and has won several competitions (Krizhevsky

et al., 2012; Goodfellow et al., 2014).

Here we introduce the most remarkable application. In 2012 ImageNet LSVRC

competition, 1.2 million high-resolution training images and 150,000 test images

are given. Then the task is to get the best classification performance. The CNN

model described in Krizhevsky et al. (2012) achieved the best performance. The

used CNN has 60 million weights, 650,000 neurons, five convolution layers to-

gether with max-pooling sub-sampling layers and two fully-connected DNN on

the top. Three important factors contribute to the success. The first is a fast hard-

ware. As mentioned above, improved chip processing abilities (e.g., graphical

processing units) enable them to train this very large CNN. The second is the big
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dataset. The last factor is powerful regularizer “dropout” (Hinton et al., 2012b).



Chapter 5

Density ratio estimation using a

deep model

This section describes an extended density ratio estimation method based on deep

convolutional neural networks. We demonstrate the performance of our proposed

method in inlier-based outlier detection.

5.1 Introduction

Recently, it was shown (Sugiyama et al., 2012b) that, through the ratio of proba-

bility density functions, various statistical data analysis paradigms such as outlier

detection, non-stationarity adaptation, mutual information estimation, and condi-

tional probability estimation can be efficiently handled in a unified manner. The

key idea of this density ratio approach is that, by directly estimating the density

ratio, a difficult task of density estimation can be avoided.

So far, various density ratio estimators have been proposed. The simplest

approach is to use logistic regression to discriminate samples from two distribu-

tions (Bickel et al., 2007). Kernel mean matching (Gretton et al., 2009) uses the

45
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Hilbert-space embedding of probability distributions to directly approximate the

values of the density ratio at data points. The Kullback-Leibler importance es-

timation procedure (KLIEP) fits a density ratio model to data under the log-loss

(Sugiyama et al., 2008; Nguyen et al., 2010). Least-squares importance fitting

(LSIF) (Kanamori et al., 2009) uses the squared-loss to fit a density ratio model

to data. Furthermore, all the above methods can be interpreted as fitting a density

ratio model to data under the Bregman divergence (Sugiyama et al., 2012a).

Among these direct density ratio estimators, an unconstrained version of LSIF

(uLSIF) with a kernel density-ratio model was demonstrated to be highly useful

in terms of both accuracy (Kanamori et al., 2012) and computational efficiency

(Kanamori et al., 2013). For that reason, uLSIF-based machine learning algo-

rithms have been successfully used in solving various machine learning tasks

(Sugiyama, 2012; Sugiyama et al., 2013b,c).

On the other hand, recent studies in pattern recognition demonstrated that deep

architecture tends to perform better than kernel models (Larochelle et al., 2007).

In particular, a convolutional neural network (CNN) is demonstrated to be an

excellent model of images (Krizhevsky et al., 2012; Jarrett et al., 2009; Lee et al.,

2009; Turaga et al., 2010; Ngiam et al., 2010), which is motivated by a biological

brain (Fukushima, 1980).

The objective of this chapter is to use the CNN model in density ratio esti-

mation. The idea of the proposed method is that trained CNNs with the uLSIF

criterion are able to abstract the prior knowledge of internal structure of data such

as images, and this extracted feature can improve the performance.

To the best of our knowledge, this is the first attempt to apply deep learning to

density ratio estimation, and we develop a gradient-based training algorithm under

the squared-loss. We apply the CNN-based density ratio estimator to inlier-based

outlier detection of images (Hido et al., 2011; Song et al., 2009), and demonstrate
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that the proposed method outperforms existing approaches.

The remainder of this chapter is organized as follows. We first review the

kernel-based uLSIF method in Section 5.2. Then, we derive a density ratio esti-

mation algorithm for CNNs in Section 5.4, and its experimental performance is

investigated in Section 5.5. Finally, we conclude in Section 5.6.

5.2 Direct Density Ratio Estimation by uLSIF

In this section, we review the uLSIF method (Kanamori et al., 2009).

5.2.1 Problem Formulation

Suppose we are given independent and identically distributed training samples

{xtr
i }ntr

i=1 from training distribution with density ptr(x) and test samples {xte
j }nte

j=1

from test distribution with density pte(x) on some data domain D ⊂ Rd. The

objective is to estimate the density ratio,

r(x) =
ptr(x)

pte(x)
,

from {xtr
i }ntr

i=1 and {xte
j }nte

j=1.

A naive approach is to first separately estimate ptr(x) from {xtr
i }ntr

i=1 and pte(x)

from {xte
j }nte

j=1, and then compute the ratio of estimated densities. However, such a

two-step approach does not perform well because the estimation error incurred in

the first density estimation step can be magnified in the second step of computing

their ratio (Sugiyama et al., 2012b). Below, a direct density ratio estimator that

does not involve density estimation is reviewed.
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5.2.2 The uLSIF Criterion

Let rα(x) be a model of the density ratio r(x), where α denotes a parameter. The

parameter α is determined so that the following squared error is minimized:

J0(α) =

∫ (
rα(x)− r(x)

)2
pte(x)dx

=

∫
rα(x)2pte(x)dx− 2

∫
rα(x)ptr(x)dx

+

∫
r(x)ptr(x)dx,

where the last term is a constant so can be ignored. The first two terms are denoted

by J :

J(α) =

∫
rα(x)2pte(x)dx− 2

∫
rα(x)ptr(x)dx,

which is empirically approximated by

1

nte

nte∑
j=1

rα(xte
j )2 − 2

ntr

ntr∑
i=1

rα(xtr
i ). (5.1)

5.2.3 uLSIF for Kernel Model

Let us consider the following kernel density ratio model:

rα(x) =
ntr∑
`=1

α`K(x,xtr
` ),

where K(x,x′) is a kernel function such as the Gaussian kernel:

K(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
for σ > 0.

Then the uLSIF criterion (5.1), enhanced with the `2-regularizer, can be expressed

as

Ĵ(α) = α>Ĝα− 2ĥ>α+ λ‖α‖2,
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Figure 5.1: Three-layer MLP.

where λ > 0 is the regularization parameter and

Ĝ`,`′ =
1

nte

nte∑
j=1

K(xte
j ,x

te
` )K(xte

j ,x
te
`′ ),

ĥ` =
1

ntr

ntr∑
i=1

K(xtr
i ,x

te
` ).

Then the minimizer is given analytically as

arg min
α
Ĵ(α) = (Ĝ + λI)−1ĥ,

where I denotes the identity matrix.

5.3 uLSIF for Multilayer Perceptron

In this section, to describe uLSIF for CNN, we will begin by describing how to

apply the uLSIF criterion (5.1) to the multilayer perceptron (MLP).
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5.3.1 MLP

An MLP is a neural network model that consists of multiple layers of nodes:

input, hidden and output layer. Each layer fully connected to the next one with

weighting, bias and nonlinear activation function. Usually a MLP consists of

three or more layers. Figure 5.1 denotes a simple three-layers MLP and we use

this model for density ratio estimation.

Hidden layer

In the hidden layer, each node is a neuron and its values are not observed in the

inputs. This neuron takes input from the input layer or the previous hidden layer,

then compute the activation via an activation function. More specifically, a vector

of an output of the lth hidden layer Ol(x) for input Ol(x) is given by

Ol(x) = f(zMLP
l (x)),

zMLP
l (x) = WMLP

l−1 Ol−1(x) + bMLP
l ,

where WMLP
l−1 is the weight associate with the connection between the current

hidden layer and previous layer and bMLP
l is the bias. Also, zMLP

l (x) denotes the

total weighted sum of inputs in layer l, including the bias term. f represents the

activation function. In this thesis we will choose the sigmoid function for the

hidden layer:

f(x) = (1 + e−x)−1.

Output layer

The output OL of the MLP for input vector x is represented as

OL(x) = h(zMLP
L (x)),

zMLP
L (x)) = WMLP

L−1 (x))OL−1(x)) + bMLP
L ,
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where L is the last layer, WMLP
L−1 is a connection parameter, bMLP

L is the bias pa-

rameter and OL−1 is the output of the last hidden layer. In the output layer, we

will use the softplus function as the activation function:

h(x) = log(1 + ex).

This is a smooth approximation to the rectifier and biologically more plausible

and does not occur the vanishing gradient problem.

5.3.2 Density ratio estimation with MLP

In general, an MLP is trained by the gradient descent algorithm. Thus we train the

MLP model with the uLSIF criterion by the gradient descent method for a pair of

samples (xte,xtr) to obtain a local minimizer:

J̇({WMLP
L }, {bMLP

L }) = OL(xte)2 − 2OL(xtr).

The gradients of J̇ with respect to WMLP
L and bMLP

L are given by

∂J̇

∂WMLP
L

= δMLP
L (xte)(OL−1(x

te))> − δMLP
L (xtr)(OL−1(x

tr))>,

∂J̇

∂bMLP
L

= δMLP
L (xte)− δMLP

L (xtr),

where

δMLP
L (xte) = 2OL(xte)h′(zMLP

L (xte)),

δMLP
L (xtr) = 2h′(zMLP

L (xtr)).

The gradients of weight and bias of the lth hidden layer are given by

∂J̇

∂WMLP
l

= δMLP
l (xte)(Ol−1(x

te))> − δMLP
l (xtr)(Ol−1(x

tr))>,

∂J̇

∂bMLP
l

= δMLP
l (xte)− δMLP

l (xtr),
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Figure 5.2: CNN.

where

δMLP
l (xte) = ((WMLP

l )>δMLP
l+1 (xte)) • f ′(zMLP

l (xte)),

δMLP
l (xtr) = ((WMLP

l )>δMLP
l+1 (xtr)) • f ′(zMLP

l (xtr)).

“•” denotes the element-wise product.

5.4 uLSIF for CNN

In this section, we apply the uLSIF criterion (5.1) to a convolutional neural net-

work (CNN).

5.4.1 CNN

A CNN is a model for 2-dimensional images and consists of multiple layers

(Figure 5.2): the input layer, alternate succession of convolution layers and sub-

sampling layers, fully connected networks, and the output layer.

Convolution Layer

In the convolution layer, the output of the previous layer is convolved with a mask

and put through the activation function to form the output feature map. More
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specifically, a matrix of an output feature map of the lth convolution layer gu
l (x)

for input feature maps gv
l−1(x) is given by

gu
l (x) = f(zu

l (x)),

zu
l (x) =

∑
v∈Mv

gv
l−1(x) ∗ kuv

l + bul ,

whereMv is a selection of the input feature maps, f represents the sigmoid func-

tion,

f(x) = (1 + e−x)−1.

∗ denotes the convolution operator, bul is a bias parameter, and kuv
l denotes a mask.

Sub-Sampling Layer

The sub-sampling layer treats each feature map separately and produces sub-

sampled versions of the input maps. More formally,

gu
l (x) = down(gu

l−1(x)) + bul ,

where “down” denotes a sub-sampling function and bul is the bias parameter. The

average value over the neighborhood is computed for each feature map in our

method. This reduced-resolution output feature map is robust to variation and

noise in the input feature map.

Fully-Connected Layer

The output gL(xj) of the fully-connected layer for input vector gL−1(xj) is repre-

sented as

gL(x) = h(zL(x)),

zL(x) = WLgL−1(x) + bL,
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where L is the last layer, WL is a connection parameter, bL is the bias parameter

and gL−1(x) is a reshaped output of the last convolution layer. h is the softplus

function ,

h(x) = log(1 + ex),

which is a smooth approximation to the rectifier max(0, x) (Nair and Hinton,

2010).

5.4.2 Density Ratio Estimation with CNN

The kernel-based uLSIF is a computationally very efficient method. Using a deep

CNN, however, would cast huge demand to the computation power during the

training process. To economize on the computation cost at every iteration, the

stochastic gradient descent algorithm is used in our implementation. Thus we

train the CNN model with the uLSIF criterion (5.1) by the stochastic gradient

method for a pair of samples (xte,xtr) to obtain a local minimizer:

J̃({WL}, {bL}) = gL(xte)2 − 2gL(xtr). (5.2)

The gradients of J̃ with respect to WL and bL are given by

∂J̃

∂WL

= δL(xte)(gL−1(x
te))> − δL(xtr)(gL−1(x

tr))>,

∂J̃

∂bL
= δL(xte)− δL(xtr),

where

δL(xte) = 2gL(xte)h′(zL(xte)),

δL(xtr) = 2h′(zL(xtr)).

The gradient of the bias for a feature map of the lth convolution layer is given

by summing all the elements in each error term:
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∂J̃

∂bul
=
∑
n,m

(δul (xte))n,m − (δul (xtr))n,m.

The gradient for the mask weight of the lth convolution layer is given by

∂J̃

∂kuv
l

=
∑
n,m

(δul (xte))n,m(Mv
l (x

te))n,m − (δul (xtr))n,m(Mv
l (x

tr))n,m,

where

Mv
l (x) = gv

l−1(x) • kuv
l ,

The error terms in the convolution layer are expressed as

δul (xte) = f ′(zu
l (xte)) • up(δul+1(x

te)),

δul (xtr) = f ′(zu
l (xtr)) • up(δul+1(x

tr)).

Here, “up” denotes the up-sampling operation, which can be implemented with

the Kronecker product. At the last convolution layer, an error term includes con-

nection parameters of the fully connected layer:

δul (xte) = WL

(
f ′(zu

l (xte)) • up(δul+1(x
te))
)
,

δul (xtr) = WL

(
f ′(zu

l (xtr)) • up(δul+1(x
tr))
)
.

The gradient of the bias for the lth sub-sampling layer is given by

∂J̃

∂bul
=
∑
n,m

(δul (xte))n,m − (δul (xtr))n,m,

where

δul (xte) = δul+1(x
te) ∗ rot(ku

l+1),

δul (xtr) = δul+1(x
tr) ∗ rot(ku

l+1).

Here “rot” denotes the rotation operator which rotates the mask by 180 degrees.
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5.5 Experiments

In this section, the proposed CNN-based uLSIF is compared with the kernel-based

uLSIF and the kernel-based KLIEP in inlier-based outlier detection. Note that,

in Hido et al. (2011), the kernel-based uLSIF and KLIEP were demonstrated to

outperform other outlier detection methods such as the one-class support vector

machine (Schölkopf et al., 2001) and the local outlier factor (Breunig et al., 2000).

5.5.1 Inlier-Based Outlier Detection

The objective of inlier-based outlier detection is to find outliers in a test data set

{xte
j }nte

j=1 given a training data set {xtr
i }ntr

i=1 which are known to be inliers. Here,

following Hido et al. (2011), the problem of inlier-based outlier detection is for-

mulated as the problem of estimating the density ratio,

r(x) =
ptr(x)

pte(x)
,

from {xtr
i }ntr

i=1 and {xte
j }nte

j=1. Given that outliers tend to exist in regions with small

inlier density ptr(x), the density ratio r(x) tends to take a small value if x is an

outlier. Outliers are hard to universally define. By contrast, inlier samples are

often stable and available abundantly in practice. Therefore the setting of inlier-

based outlier detection would be more practical than the (semi) supervised setting.

5.5.2 Experimental Setup

We use a CNN with 5 layers, i.e., the first 4 layers contain two alternate convolu-

tion layers and sub-sampling layers, followed by an additional convolution layer

for making a vector input which is given to the final fully-connected layer (see

Figure 5.2 again). The size of input images depends on the data set. The first

layer has 6 convolution masks of size 9 × 9 with a stride of a pixel for image of
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size 32 × 32 (for smaller images, we use 5 × 5 convolution masks). In the fol-

lowing sub-sampling layer, each unit calculates the average over the output from

neighbors of 2×2 pixels. The sub-sampling layer reduces the resolution of output

of the previous layer and the reduced feature is robust to small variations. The sec-

ond convolution layer has 12 convolution masks of size 5× 5 (for smaller images,

we use 3×3 convolution masks). Sub-sampling is applied to its output again. The

third convolution layer reshapes 12 feature maps generated by the previous sub-

sampling layer and provide the vector input to the final fully-connected layer. We

use the sigmoid activation function for convolution layers and the ReLU activa-

tion function for the last layer. At the learning stage, all parameters are optimized

through the stochastic gradient method. We use the constant learning rate 0.1 for

all layers. All the model parameters such as the size of the convolution mask,

the number of layers and learning rate are tuned in the same way as the previous

studies (LeCun et al., 1998, 2010).

We use the MNIST handwritten digit dataset, the USPS handwritten digit

dataset, the PIE face image dataset, and the CIFAR-10 image classification dataset.

We select one class (e.g., airplane in CIFAR-10) and all training samples in

this class are regarded as a training set in inlier-based outlier detection. Then

all evaluation samples of a selected class and a fraction ρ of evaluation samples

from another class (e.g., bird) are regarded as a test set in inlier-based outlier

detection. Namely, we regard samples in a selected class as inliers and samples

in another class as outliers. The area under the ROC curve (AUC) value is used

as an error metric. Kernel-based uLSIF and KLIEP were designed to use selected

100 test input points as Gaussian centers randomly.

5.5.3 Results

Experimental results are exhibited below.
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MNIST and USPS

The MNIST dataset contains hand-written digit images in gray-scale: a training

set of 60,000 images and a test set of 10,000 images. Each image consists of 1,024

(= 32×32) pixels. The USPS hand-written digit dataset contains 9,298 gray-scale

images of size 16×16 which are spilt into a training set of 7,291 images and a test

set of 2,007 images. Both datasets have 10 class labels which are integers between

0 and 9. We tried to select similar digits for the inlier class and outlier class as

much as possible in MNIST and USPS, because we want to make the problem

more difficult.

The mean AUC values and the standard deviations over 20 trials for MNIST

and USPS are summarized in Table 5.2, and the mean MSE (mean squared error)

values and the standard deviations over 20 trials for MNIST and USPS are shown

in Table 5.3. Figure 5.3 depicts the ROC curves for the experiment with inlier

class 9 and outlier class 8. The results show that the proposed CNN-based uLSIF

works significantly better than kernel-based KLIEP and uLSIF.

Table 5.1 shows the computation time of each algorithm for the USPS dataset

(8 and 3). As we mentioned above, kernel-based uLSIF has the best performance

in terms of computational efficiency. Mean AUC values (with standard deviations

in parentheses) over 50 trials for the PASCAL VOC dataset. The best method in

terms of the mean AUC and comparable methods according to the t-test at the

significance level 5% are specified by bold face.

Table 5.1: Computation time of USPS dataset (8 and 3)

Method
uLSIF

(CNN)

uLSIF

(kernel)

KLIEP

(kernel)

Computation time (sec) 833.4969 0.0028 0.0164
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Figure 5.3: ROC curves of MNIST 9 and 8 (ρ = 0.05).

PIE

Next, we consider outlier detection on the PIE face image dataset. Face images

contain more complex objects than digits and data variability caused by posing

variations, illumination conditions, and facial expressions is higher. These facts

make outlier detection more challenging for the PIE dataset. The original PIE

dataset contains 41,368 color face images with 68 individuals, each person is un-

der 13 different poses, 43 different illumination conditions, and with 4 different

expressions. We use the processed PIE data for face recognition (He et al., 2005),

which chooses five near-frontal poses and uses all the images under different illu-

minations and expressions; thus 170 images are given for each individual. Each

individual is treated as a class, so the dataset has 68 class labels which are integers

between 0 and 67. We select one class (e.g., class 7) and all training samples in

this class are regarded as a training set in inlier-based outlier detection. Then all

evaluation samples of the selected class and a fraction ρ of evaluation samples

from another class (e.g., class 33) are regarded as a test set in inlier-based outlier
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detection. The inlier class and outlier class are selected randomly. We allocate

randomly chosen 5,780 images for training samples and the remaining 5,780 im-

ages for test samples in this experiment. All the images are manually aligned and

cropped. The cropped images are 32× 32 pixels with 256 gray-levels per pixel.

The mean AUC values and the standard deviations over 20 trials are summa-

rized in Table 5.4, and Figure 5.4 depicts the ROC curves for the experiment with

inlier class 7 and outlier class 33. The results show that our proposed method

achieves better performance for all classes than the kernel-based KLIEP and uL-

SIF.
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Figure 5.4: ROC curves of PIE 7 and 33 (ρ = 0.05).

CIFAR-10

Finally, we use the CIFAR-10 image classification dataset, which consists of

32 × 32 color images in 10 classes (airplane, car, bird, cat, deer, dog,

frog, horse, ship, and truck) with 6,000 images per class. The inlier class

and outlier class are selected randomly for CIFAR-10. Since images in CIFAR-10
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contain more data variability and noise than those in the PIE dataset, outlier detec-

tion is expected to be even harder. There are 50,000 training images and 10,000

test images, and we convert color images to gray-scale.

The mean AUC values and the standard deviations over 20 trials are sum-

marized in Table 5.5, and Figure 5.5 depicts the ROC curves for the experiment

with inlier class car and outlier class cat. The results show that the proposed

CNN-based uLSIF performs excellently.
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Figure 5.5: ROC curves of CIFAR-10 car and cat (ρ = 0.05).

5.6 Discussion

We proposed to use CNNs in least-squares direct density-ratio estimation, uLSIF,

and demonstrated its usefulness in inlier-based outlier detection of images.

In order to investigate the change in AUC values for different number of kernel

function, we executed uLSIF and KLIEP with different number of kernel centers

for the CIFAR-10 dataset (car and cat). As shown in Figure 5.8. This shows
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Figure 5.6: The first convolution layer masks. Left (a) depicts first convolution

layer masks of MNIST experiments of class 4 and 9. Class 4 is in-

lier class. Right (b) depicts first convolution layer masks of MNIST

experiments of class 8 and 3. Class 8 is inlier class.

that using 100 kernels is reasonable in terms of both accuracy and computation

time.

The idea of the proposed method is that trained CNNs with the uLSIF crite-

rion are able to abstract features that are robust to spatial variations and have good

internal information of raw images for density ratio estimation. And this extracted

feature from deep architecture CNNs can improve the performance. Through re-

markable experimental results with MNIST, USPS, PIE and CIFAR-10, we have

shown the CNNs based uLSIF outperforms other kernel based methods and is

stable over various datasets.

Another interesting thing is that KLIEP has higher AUC values than uLSIF in

all experiments despite the same kernel model is used for both. That is because the

KLIEP’s empirical version of the Kullback-Leibler divergence is more sensitive

to outlier (Fujisawa and Eguchi, 2006; Sugiyama et al., 2013a).

Multi-layer structure of CNNs gives us a chance to look into the outlier detec-
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Figure 5.7: The first convolution layer masks. Left (a) depicts first convolution

layer masks of MNIST experiments of class 4 and NIST SD19. Class

4 is inlier class. Right (b) depicts first convolution layer masks of

MNIST experiments of class 8 and NIST SD19. Class 8 is inlier

class.

tion process. Figure 5.6 displays the first convolution masks of size 9× 9 learned

by the proposed method for the MNIST experiment with (a) inlier class 4 and

outlier class 9 and (b) inlier class 8 and outlier class 3. In (a), masks have oblique

and rectilinear patterns and they seem like a part of digit 4. In contrast, in (b),

masks have U-shaped and turned U-shaped patterns, which are rarely found in

outlier class 3. Thus, the masks have learned to detect inliers’ edges and lines

at different positions and angles in the images, implying that our algorithm is

translation-invariant.

We designed another experiment to see the influence of the outlier sample.

We used the NIST SD19 handwritten character dataset (Grother, 1995) for outlier

samples. It includes handwritten letter sample forms by 3600 writers, 810,000

character images. We selected 1000 images randomly. The resolution and color

of these images are modified for the same condition as the MNIST dataset. Fig-
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Figure 5.8: Change in AUC values for different number of kernel functions

(CIFAR-10 car and cat)

ure 5.7 displays the first convolution masks of size 9× 9 learned by the proposed

method for the MNIST experiment with (a) inlier class 4 and outlier samples from

the NIST SD19 dataset and (b) inlier class 8 and outlier samples from the NIST

SD19 dataset. This figure shows that our trained CNN model with the uLSIF cri-

terion can abstract the parts of the inlier image samples. The part of an object in

the image is one of the internal structures that are established by meaningful and

invariant information from raw pixels.

The mean AUC values and the standard deviations over 10 trials are summa-

rized in Table 5.6. Since outlier detection problem is easier than other experiments

because of totally dissimilar outlier sample to inlier samples, we can get magnifi-

cent results. Through these experimental results, we can know that our algorithm

is translation-invariant regardless of the type of outlier.
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Table 5.2: Mean AUC values and the standard deviations over 20 trials for

MNIST and USPS. The best method in terms of the mean AUC and

comparable methods according to the t-test at the significance level

5% are specified by bold face.

Dataset

(Inlier & outlier)
ρ

uLSIF

(CNN)

uLSIF

(kernel)

KLIEP

(kernel)

MNIST

4 & 9
0.01 0.86 ± 0.12 0.64 ± 0.00 0.82 ± 0.00

0.05 0.89 ± 0.01 0.65 ± 0.04 0.79 ± 0.06

2 & 5
0.01 0.95 ± 0.05 0.79 ± 0.00 0.95 ± 0.00

0.05 0.98 ± 0.01 0.91 ± 0.01 0.97 ± 0.00

8 & 3
0.01 0.97 ± 0.02 0.91 ± 0.00 0.94 ± 0.00

0.05 0.97 ± 0.01 0.83 ± 0.01 0.91 ± 0.00

9 & 8
0.01 0.97 ± 0.05 0.88 ± 0.00 0.92 ± 0.00

0.05 0.97 ± 0.01 0.71 ± 0.02 0.87 ± 0.00

USPS

4 & 9
0.03 0.87 ± 0.11 0.53 ± 0.00 0.73 ± 0.00

0.05 0.95 ± 0.13 0.68 ± 0.03 0.82 ± 0.01

2 & 5
0.03 0.97 ± 0.11 0.91 ± 0.00 0.93 ± 0.00

0.05 0.99 ± 0.02 0.94 ± 0.01 0.98 ± 0.00

8 & 3
0.03 0.95 ± 0.04 0.73 ± 0.00 0.77 ± 0.00

0.05 0.91 ± 0.07 0.67 ± 0.02 0.83 ± 0.02

9 & 8
0.03 0.91 ± 0.14 0.92 ± 0.00 0.94 ± 0.00

0.05 0.95 ± 0.06 0.59 ± 0.02 0.80 ± 0.03
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Table 5.3: Mean MSE values over 20 trials for MNIST and USPS. The best

method in terms of the mean MSE and comparable methods accord-

ing to the t-test at the significance level 5% are specified by bold face.

Dataset

(Inlier & outlier)
ρ

uLSIF

(CNN)

uLSIF

(kernel)

KLIEP

(kernel)

MNIST

4 & 9
0.01 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00

0.05 -0.51 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00

2 & 5
0.01 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00

0.05 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00

8 & 3
0.01 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00

0.05 -0.52 ± 0.00 -0.51 ± 0.01 -0.51 ± 0.00

9 & 8
0.01 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00

0.05 -0.51 ± 0.00 -0.50 ± 0.01 -0.50 ± 0.00

USPS

4 & 9
0.03 -0.49 ± 0.02 -0.50 ± 0.00 -0.50 ± 0.00

0.05 -0.50 ± 0.02 -0.50 ± 0.00 -0.50 ± 0.00

2 & 5
0.03 -0.49 ± 0.04 -0.50 ± 0.00 -0.50 ± 0.00

0.05 -0.51 ± 0.01 -0.50 ± 0.00 -0.50 ± 0.00

8 & 3
0.03 -0.49 ± 0.04 -0.50 ± 0.00 -0.50 ± 0.00

0.05 -0.50 ± 0.03 -0.50 ± 0.00 -0.50 ± 0.00

9 & 8
0.03 -0.49 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00

0.05 -0.50 ± 0.02 -0.50 ± 0.00 -0.50 ± 0.00
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Table 5.4: Mean AUC values and the standard deviations over 20 trials for PIE.

The best method in terms of the mean AUC and comparable methods

according to the t-test at the significance level 5% are specified by bold

face.

PIE

(Inlier & outlier)
ρ

uLSIF

(CNNs)

uLSIF

(kernel)

KLIEP

(kernel)

1 & 12
0.03 0.97 ± 0.02 0.92 ± 0.00 0.96 ± 0.00

0.05 0.96 ± 0.02 0.86 ± 0.00 0.93 ± 0.00

2 & 58
0.03 0.85 ± 0.02 0.53 ± 0.00 0.75 ± 0.00

0.05 0.81 ± 0.08 0.37 ± 0.00 0.66 ± 0.00

4 & 35
0.03 0.86 ± 0.04 0.81 ± 0.00 0.85 ± 0.00

0.05 0.69 ± 0.07 0.42 ± 0.00 0.53 ± 0.00

7 & 33
0.03 0.90 ± 0.04 0.64 ± 0.00 0.82 ± 0.00

0.05 0.94 ± 0.05 0.65 ± 0.00 0.84 ± 0.00

12 & 62
0.03 0.56 ± 0.21 0.57 ± 0.00 0.65 ± 0.00

0.05 0.67 ± 0.18 0.60 ± 0.00 0.63 ± 0.00

18 & 28
0.03 0.80 ± 0.07 0.62 ± 0.00 0.77 ± 0.00

0.05 0.81 ± 0.05 0.51 ± 0.00 0.67 ± 0.00

19 & 32
0.03 0.85 ± 0.02 0.69 ± 0.00 0.83 ± 0.00

0.05 0.84 ± 0.05 0.59 ± 0.00 0.76 ± 0.00

21 & 30
0.03 0.71 ± 0.12 0.51 ± 0.00 0.69 ± 0.00

0.05 0.95 ± 0.10 0.66 ± 0.00 0.84 ± 0.00

24 & 37
0.03 0.91 ± 0.04 0.86 ± 0.00 0.90 ± 0.00

0.05 0.92 ± 0.03 0.84 ± 0.00 0.89 ± 0.00

21 & 47
0.03 0.65 ± 0.13 0.51 ± 0.00 0.63 ± 0.00

0.05 0.67 ± 0.13 0.33 ± 0.00 0.36 ± 0.00

40 & 11
0.03 0.81 ± 0.05 0.81 ± 0.00 0.83 ± 0.00

0.05 0.86 ± 0.07 0.83 ± 0.00 0.85 ± 0.00
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Table 5.5: Mean AUC values and the standard deviations over 20 trials for

CIFAR-10. The best method in terms of the mean AUC and com-

parable methods according to the t-test at the significance level 5% are

specified by bold face.

CIFAR

(Inlier & outlier)
ρ

uLSIF

(CNN)

uLSIF

(kernel)

KLIEP

(kernel)

Car and cat
0.03 0.71 ± 0.06 0.57 ± 0.01 0.65 ± 0.00

0.05 0.79 ± 0.03 0.50 ± 0.01 0.52 ± 0.00

Airplane and bird
0.03 0.63 ± 0.03 0.51 ± 0.00 0.61 ± 0.00

0.05 0.65 ± 0.05 0.50 ± 0.01 0.61 ± 0.00

Truck and car
0.03 0.58 ± 0.06 0.45 ± 0.02 0.66 ± 0.00

0.05 0.66 ± 0.02 0.51 ± 0.00 0.65 ± 0.00

Ship and airplane
0.03 0.64 ± 0.03 0.61 ± 0.00 0.61 ± 0.00

0.05 0.66 ± 0.02 0.49 ± 0.00 0.64 ± 0.00

Dog and frog
0.03 0.78 ± 0.08 0.59 ± 0.03 0.74 ± 0.00

0.05 0.77 ± 0.10 0.64 ± 0.02 0.73 ± 0.01

Table 5.6: Mean AUC values over 10 trials for MNIST and NIST SD19. The best

method in terms of the mean AUC and comparable methods according

to the t-test at the significance level 5% are specified by bold face

Data

(Inlier & outlier)
ρ

uLSIF

(CNN)

uLSIF

(kernel)

KLIEP

(kernel)

MNIST 4 & NIST SD19 0.05 1 ± 0.00 0.45 ± 0.07 0.93 ± 0.02

MNIST 8 & NIST SD19 0.05 1 ± 0.00 0.65 ± 0.04 0.97 ± 0.00



Chapter 6

Conclusions and future work

In this chapter, we summarize the major contributions of this thesis and present

several future works.

6.1 Conclusions

The density ratio framework is applicable to various in machine learning tasks.

The direct density ratio approach estimates the density ratio directly so that we can

avoid a difficult and fallible method that estimates each density respectively. This

thesis was devoted to the direct density ratio approach to multi-label classification

and outlier detection. The contributions in this thesis are summarized as follows:

• In Chapter 3, we proposed a computationally efficient multi-label method

called ML-LSPC (multi-label least squares probabilistic classifier). We em-

ployed a multi-task learning method MT-LSPC (multi-task least squares

probabilistic classifier) to solve the multi-label learning problem because

similar labels should have similar classification solutions. However, be-

cause the essential number of training samples for multi-label classification

69
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is multiplied according to the dimension of the label, naive implementation

of ML-LSPC is computationally more expensive than MT-LSPC.

To improve computational efficiency, we introduced two ideas (Section 3.3).

The first idea was to utilize the block structure of the system of linear equa-

tions. The second idea used a solver of the continuous Sylvester equation

which often arises in control theory. Through experiments, we showed that

the proposed method, ML-LSPC is promising.

• In Chapter 5, we proposed to use deep convolutional neural networks (CNN)

in least-squares direct density-ratio estimation (uLSIF), and demonstrated

its usefulness in inlier-based outlier detection of images. To the best of our

knowledge, this is the first attempt to apply deep learning to density ratio es-

timation. There are several reasons for applying deep learning to density ra-

tio estimation: First, the recent studies in pattern recognition demonstrated

a deep model tends to perform better than shallow models. Especially, CNN

has been found very effective and been commonly used in computer vision.

Second, multi-layer structure of deep architecture gives us a chance to look

into the outlier detection process.

To describe uLSIF for CNN, We formulated uLSIF for a simple three-layers

multilayer perceptron (MLP) in Section 5.3. Subsequently, we presented

the uLSIF based on a deep CNN model in Section 5.4. The CNN model is

trained with the uLSIF criterion (5.1) by the gradient descent method for a

pair of samples to obtain a local minimizer.

In Section 5.5, we presented the experimental setup and experiments on

various real-world datasets. Outliers occur due to several reasons such as

mechanical error, network problem and fraudulent behaviour. Among them,

mislabelling by a human error is the most common factor of outliers. There-
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fore, we had focused on mislabelling data and designed experiments. About

hand written digit dataset, we tried to select similar digits to the inlier class

for outlier class as much as possible. About PIE and CIFAR-10, the in-

lier class and outlier class are selected randomly. The experimental results

showed that the proposed method gives a more accurate performance of the

outlier detection than the shallow model based methods.

6.2 Future works

In this section, we will discuss possible future works.

In this thesis, we used the kernel model in LSPCs. This method achieved

good results in terms of both accuracy and computational efficiency. On the other

hands, we demonstrated the usefulness of a deep model in density ratio estimation

in Chapter 5. A deep model based uLSIF for multi-label classification can also be

investigated.

We showed the computation time of each algorithm in Section 5.5.3. The

kernel-based uLSIF has the best performance in terms of computational efficiency.

On the other hand, the deep CNN-based uLSIF requires huge computation power

for training. To economize on the computation cost, we used the stochastic gra-

dient descent algorithms in this thesis. Another possible learning algorithm is

Hessian free (Kingsbury et al., 2012). Also several tricks can also be employed

for reducing the computation cost of our method:

• Over-specification: It trains a deep model which are larger than needed

(Livni et al., 2014).

• Regularization: Regularizing the weights of a deep model speeds up the

convergence (Livni et al., 2014). Dropout (Hinton et al., 2012b) and maxout

(Miao et al., 2013) are widely exploited in recent studies.
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We used uLSIF for training CNN, but there are many other density ratio es-

timators (Sugiyama et al., 2012b). Developing algorithms for training CNN with

other density ratio estimation approaches is an important future work. In this the-

sis, we focused on inlier-based outlier detection. However, we believe that the

proposed method is also useful in other machine learning tasks that can be tacked

via density ratio estimation (Sugiyama et al., 2012b).
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